Abstract

In this paper some new links between the nonlinearity and differential uniformity of some large classes of functions are established. Differentially two-valued functions and quadratic functions are mainly treated. A lower bound for the nonlinearity of monomial δ-uniform permutations is obtained, for any δ, as well as an upper bound for differentially two-valued functions. Concerning quadratic functions, significant relations between nonlinearity and differential uniformity are exhibited. In particular, we show that the quadratic differentially 4-uniform permutations should be differentially two-valued and possess the best known nonlinearity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.