Abstract

The flow of viscoelastic materials is usually interpreted as resulting from intramolecular properties. Typically, the non-linear flow behaviour and sluggish relaxation dynamics in entangled polymers are interpreted by a disentanglement process. This molecular interpretation has never been validated by direct observation. We report here on in situ observations of polymer melts under steady-state shear flow using neutron scattering and particle tracking velocimetry. It is shown that the chains remain largely undeformed under steady-state shear flow whereas wall slippage and shear-banding are identified in both entangled and unentangled polymer melts. These observations are of prime importance; they reveal that the flow mechanism and its viscoelastic signature reflect a collective effect and not properties of individual chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.