Abstract

Probability distributions are very useful in modeling lifetime datasets. However, no specific distribution is suitable for all kinds of datasets. In this study, the bounded truncated Cauchy power exponential distribution is proposed for modeling datasets on the unit interval. The probability density function exhibits desirable shapes, such as left-skewed, right-skewed, reversed J, and bathtub shapes, whereas the hazard rate function displays J and bathtub shapes. For the purpose of modeling dependence between measures in a dataset, a bivariate extension of the proposed distribution is developed. The bivariate probability density function displays monotonic and non-monotonic shapes, making it suitable for modeling complex bivariate relations. Subsequently, the applications of the distribution are illustrated using COVID-19 data. The results revealed that the new distribution provides a better fit to the datasets compared to other existing distributions. Finally, a new quantile regression model is developed and its application demonstrated. The generated quantile regression model offers a decent fit to the data, according to the residual analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call