Abstract

BackgroundTemporal changes of pain perception to prolonged tonic heat pain are conventionally assessed using a computerized visual analog scale. Such a rating-based approach is, however, prone to floor and ceiling effects, which limit the assessment of temporal changes in perception. Thus, alternative methods that overcome these shortcomings are warranted. New methodThe aim of this study was to assess the feasibility and reliability of a psychophysical approach, i.e., participant-controlled temperature (PCT), to evaluate ongoing human perception of tonic heat pain. Fifty participants were presented with a 45 °C stimulus on the non-dominant hand, and were instructed to maintain their initial sensation for two minutes via a feedback controller in the dominant hand. A subset of participants (n = 17) performed PCT tonic heat protocols on two different days to determine the test-retest reliability. As participants controlled temperature to maintain a stable pain perception, any adjustments made reflected shifts in their perception of heat. ResultsIn 33 (71.7%) participants, we observed an initial adaptation (participant increased temperature) followed by temporal summation of pain (participant decreased temperature). Twelve participants (26.1%) showed only adaptation and one (2.2%) only temporal summation. No sex differences were observed, nor did the initial rating of pain have an effect on PCT outcomes. Temporal summation of pain showed moderate to substantial reliability upon retest. ConclusionsPCT represents can be reliably performed using a contact heat stimulator to measure the temporal summation of pain. The standardized setup and overall good reliability of the outcome measures facilitate a sound implementation into the clinical work-up of patients with pain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.