Abstract

In this study, we propose a meshless scheme, GC-LSM (Geometric Conservation Least Squares Method), satisfying the geometric conservation and 1st order consistency. These constraints are introduced in order to overcome the non-conservativeness of the original meshless scheme and imposed by Lagrange multiplier on the least squares method which determines weighting coefficients of the derivative terms. Improvements on the meshless scheme are confirmed through computations with randomly distributed grid points for a sine wave, nozzle flow, and hypersonic flow around blunt body. Combined with AUSMPW + and MUSCL scheme, GC-LSM of the second order accuracy gives non-oscillating solution around a strong shockwave, even for hypersonic flow, and shows its capability comparable to the finite volume method in views of accuracy, robustness, and convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.