Abstract

Abstract The current work seeks to develop a novel CuO-doped lead calcium barium borate glass using the melt quenching method at 1100 °C. There was a 3.91–4.49 g/cm3 change in the fabricated glasses’ density, with a respective 0–15 mol.% increase in the CuO concentration. Additionally, substituting CuO for B2O3 reduced the fabricated glasses mechanical properties due to the decreased dissociation energy between 63.99 and 60.50 kcal/cm3, and the packing factor decreased between 15.22 and 13.23 cm3/mol. Through increasing the fabricated glasses’ CuO concentration, there was a decrease in the bulk, longitudinal, shear, and mechanical Young moduli. Moreover, Monte Carlo simulation (energy interval: 0.033–2.506 MeV) was employed to evaluate the fabricated glasses’ ability to shield gamma rays. A 0–15 mol.% increase in the CuO concentration raised the linear attenuation coefficient (LAC) between 14.081 and 16.797 cm−1 (0.059 MeV), 0.325–0.371 cm−1 (0.662 MeV), and 0.154–0.176 cm−1 (2.506 MeV). The LAC enhancement reduced the required half value thickness of the fabricated glasses by 16.2 %, 12.53 %, and 12.85 % at the of 0.059, 0.662, and 2.506 MeV gamma ray energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.