Abstract

Acute kidney injury (AKI) occurs in 30-50% of all intensive care patients. Renal replacement therapy (RRT) has to be initiated in 10-15%. The early in-hospital mortality is about 50%. Up to 20% of all survivors develop chronic kidney disease after intensive care discharge and progress to end-stage kidney disease within the next 10years. For timely initiation of prophylactic or therapeutic interventions, it is crucial to exactly determine the actual kidney function, i. e., glomerular filtration rate (GFR), and to gain insight into the further development of kidney function. Traditionally, renal function has been estimated using serum levels of creatinine or urea. Unfortunately, both are notoriously unreliable and insensitive in intensive care patients. CystatinC has fewer non-GFR determinants when compared to creatinine and is more sensitive and accurate to detect early decreases of GFR. At present, new functional tests are discussed, namely the furosemide stress test (FST) and renal functional reserve (RFR). The FST consists of an intravenous infusion of 1.0-1.5 mg/kgBW furosemide to critically ill patients with AKI. An increase in urine output to >100 ml/h is indicative of aGFR >20 ml/min and almost certainly excludes progression to AKI stage III and need for RRT. Estimation of RFR can be made by short-term oral or intravenous administration of ahigh protein load. Asubsequent increase in GFR defines the presence and the magnitude of functional reserve which can be activated. Loss of RFR is an indicator of loss of functioning nephron mass and incomplete recovery following AKI. Both FST and RFR can help to improve diagnosis and care of high-risk patients with acute and chronic kidney disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call