Abstract
The synthesis of four novel syn-type tricyclic laddersiloxanes bearing eight or six alkenyl groups is presented. These compounds possess reactive alkenyl groups on both the bridged and side silicon atoms, and their structures were determined through characterization using multinuclear 1D and 2D NMR spectroscopy, mass spectrometry, and elemental analysis techniques. To investigate their reactivity, the compounds were subjected to hydrosilylation using two different silanes, and the resulting fully hydrosilylated compounds were thoroughly analyzed. Remarkably, all the synthesized laddersiloxanes displayed high thermal stability, suggesting their potential as promising precursors for the development of new hybrid materials. Additionally, preliminary findings indicate the possibility of exploiting the reactivity difference between the alkenyl groups attached to the D- and T-unit silicon atoms for the synthesis of Janus molecules. These findings highlight the potential of the reported compounds as valuable building blocks in the construction of innovative materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.