Abstract

We propose a method for solving linear and nonlinear hypersingular integral equations. For nonlinear equations the advantage of the method is in rather weak requirements for the nonlinear operator behavior in the vicinity of the solution. The singularity of the kernel not only guarantees strong diagonal dominance of the discretized equations, but also guarantees the convergence of a simple iterative scheme based on Lyapunov stability theory. The resulting computational method can be implemented with recurrent neural networks or analog computers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.