Abstract
This paper proposes a new iterative framework for the correction of frequency response mismatch in time-interleaved analog-to-digital converters. Based on a general time-varying linear system model for the mismatch, we treat the reconstruction problem as a linear inverse problem and establish a flexible iterative framework for practical implementation. It encumbrances a number of efficient iterative correction algorithms and simplifies their design, implementation, and performance analysis. In particular, an efficient Gauss-Seidel iteration is studied in detail to illustrate how the correction problem can be solved iteratively and how the proposed structure can be efficiently implemented using Farrow-based variable digital filters with few general-purpose multipliers. We also study important issues, such as the sufficient convergence condition and reconstructed signal spectrum, derive new lower bound of signal-to-distortion-and-noise ratio in order to ensure stable operation, and predict the performance of the proposed structure. Furthermore, we propose an extended iterative structure, which is able to cope with systems involving more than one type of mismatches. Finally, the theoretical results and the effectiveness of the proposed approach are validated by means of computer simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.