Abstract

Two new iridium(III) cyclometalates (A and B) based on 2-[5-(9,9′-diethyl-9H-fluoren-7-yl)thienyl]-pyridine were synthesized, characterized and applied in bulk-heterojunction solar cells (BHJSCs). Their absorption, electrochemical, thermal and photovoltaic properties have been investigated. The results reveal that the replacement of phenyl ring by thienyl one can extend the absorption wavelength up to 530 nm, thus narrowing the energy gap (Eg) to 2.93 eV and 2.81 eV for A and B, respectively. These complexes exhibit excellent thermal stability with the onset decomposition temperature at 5% weight-loss (Td) of over 370 °C. The BHJSC device with A as donor blended with [6,6]-phenyl C61-butyric acid methyl ester (PCBM) gave the best power conversion efficiency (η) of 0.51%, with a short-circuit photocurrent density (Jsc) of 2.68 mA cm−2, an open-circuit photovoltage (Voc) of 0.66 V and a fill factor (ff) of 0.28 under illumination of an AM 1.5 solar cell simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.