Abstract

New inverse kinematic algorithms for generating redundant robot joint trajectories are proposed. The algorithms utilize the kinematic redundancy to improve robot motion performance (in joint space or Cartesian space) as specified by certain objective functions. The algorithms are based on the extension of the existing “joint-space command generator” technique in which a null space vector is introduced which optimizes a specific objective function along the joint trajectories. In this article, the algorithms for generating the joint position and velocity (PV) trajectories are extensively developed. The case for joint position, velocity, and acceleration (PVA) generation is also addressed. Application of the algorithms to a four-link revolute planar robot manipulator is demonstrated through simulation. Several motion performance criteria are considered and their results analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call