Abstract
Transmission through the dorsal thalamus involves nuclei that convey different aspects of sensory or motor information. Cells in the dorsal thalamus are strongly inhibited by the GABAergic cells of the thalamic reticular nucleus (TRN). Here we show that stimulation of cells in specific dorsal thalamic nuclei evokes robust IPSCs or IPSPs in other specific dorsal thalamic nuclei and vice versa. These IPSCs are GABA(A) receptor-mediated currents and are consistent with the activation of disynaptic intrathalamic pathways mediated by TRN. Thus, cells engaged in sensory analyses in the ventrobasal complex or the medial division of the posterior complex can interact with cells responsive to sensory events in the caudal intralaminar nuclei, whereas cells engaged in motor analyses in the ventrolateral nucleus can interact with cells responsive to motor events in the rostral intralaminar nuclei. Furthermore, sensory event-related cells in the caudal intralaminar nuclei can interact with motor event-related cells in the rostral intralaminar nuclei. In addition, single cells in one dorsal thalamic nucleus can receive convergent inhibitory inputs after stimulation of cells in two or more other dorsal thalamic nuclei, and TRN-mediated inhibitory inputs can momentarily switch off tonic firing of action potentials in dorsal thalamic cells. Our findings provide the first direct evidence for a rich network of intrathalamic pathways that allows modality-related and cross-modality inhibitory modulation between dorsal thalamic nuclei. Moreover, TRN-mediated switching between dorsal thalamic nuclei could provide a mechanism for the selection of competing transmissions of sensory and/or motor information through the dorsal thalamus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.