Abstract
The method of invariant embedding for the solutions of boundary value problems yields an equivalent formulation to the initial boundary value problems by a system of Riccati operator differential equations. A combined technique based on invariant embedding approach and Yosida regularization is proposed in this paper for solving abstract Riccati problems and Dirichlet problems for the Poisson equation over a circular domain. We exhibit, in polar coordinates, the associated Neumann to Dirichlet operator, somme concrete properties of this operator are given. It also comes that from the existence of a solution for the corresponding Riccati equation, the problem can be solved in appropriate Sobolev spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.