Abstract

The magnesium compounds RE4Co2Mg3 (RE = Pr, Gd, Tb, Dy) were prepared by induction melting of the elements in sealed tantalum tubes. The samples were studied by powder X-ray diffraction. The structures of the gadolinium and of the terbium compound were refined from single crystal diffractometer data: Nd4Co2Mg3-type, P2/m, Z = 1, a = 754.0(4), b = 374.1(1), c = 822.5(3) pm, β = 109.65(4)°, wR2 = 0.0649, 730 F2 values for Gd4Co2Mg3 and a = 750.4(2), b = 372.86(6), c = 819.5(2) pm, β = 109.48(3)°, wR2 = 0.0398, 888 F2 values for Tb4Co2Mg3 with 30 variables each. The RE4Co2Mg3 structures are 3 : 1 intergrowth variants of distorted CsCl and AlB2 related slabs of compositions REMg and RECo2. Characteristic structural features (exemplary for Tb4Co2Mg3) are relatively short Tb-Co (271 pm), Co-Co (232 pm) and Mg-Mg (314 pm) distances. The latter are a geometrical constraint of the distortion of the REMg and RECo2 slabs. Chemical bonding analysis (ELF and ECOV data) for Gd4Co2Mg3 reveals strong Gd-Co bonding followed by Mg-Co, while the Mg-Mg interactions can be considered as weak. The Co-Co contacts are only weakly bonding. The bonding and antibonding states are almost filled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.