Abstract
This paper considers the imaging of local perturbations of an infinite penetrable periodic layer. A cell of this periodic layer consists of several bounded inhomogeneities situated in a known homogeneous media. We use a differential linear sampling method to reconstruct the support of perturbations without using the Green’s function of the periodic layer nor reconstruct the periodic background inhomogeneities. The justification of this imaging method relies on the well-posedeness of a nonstandard interior transmission problem, which until now was an open problem except for the special case when the local perturbation did not intersect the background inhomogeneities. The analysis of this new interior transmission problem is the main focus of this paper. We then complete the justification of our inversion method and present some numerical examples that confirm the theoretical behavior of the differential indicator function determining the reconstructable regions in the periodic layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.