Abstract
This paper proposes a new integration method for cell formation, group scheduling, production, and preventive maintenance (PM) planning problems in a dynamic cellular manufacturing system (CMS). The cell formation sub-problem aims to form part families and machine groups, which minimizes the inter-cell material handling, under-utilization, and relocation costs. The production planning aspect is a multi-item capacitated lot-sizing problem accompanied by sub-contracting decisions, while the group scheduling problem deals with the decisions on the sequential order of the parts and their corresponding completion times. The purpose of the maintenance sub-problem is to determine the availability of the system and the time when the noncyclical perfect PM must be implemented to reduce the number of corrective actions. Numerical examples are generated and solved by Bender’s decomposition pack in GAMS to evaluate the interactions of the proposed model. Statistical analysis, based on a nonparametric method, is also used to study the behavior of the model’s cost components in two different situations. It is shown that by adding the PM planning decisions to the tactical decisions of the dynamic CMS, the optimal configuration and production plans of the system are heavily affected. The results indicate that omitting the PM actions increases the number of sudden failures, which leads to a higher total cost. Finally, it is concluded that the boost in the total availability of the dynamic CMS is one of the main advantages of the proposed integrated method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.