Abstract

BackgroundUnspecific peroxygenases (UPO) (EC 1.11.2.1) represent an intriguing oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity. With over 300 identified substrates, UPOs catalyze numerous oxidations including 1- or 2- electron oxygenation, selective oxyfunctionalizations, which make them most significant in organic syntheses and potentially attractive as industrial biocatalysts. There are very few UPOs available with distinct properties, notably, MroUPO which shows behavior ranging between UPO and another heme-thiolate peroxidase, called Chloroperoxidase (CPO). It prompted us to search for more UPOs in fungal kingdom which led us to studying their relationship with CPO.ResultsIn this study, we searched for novel UPOs in more than 800 fungal genomes and found 113 putative UPO-encoding sequences distributed in 35 different fungal species (or strains), amongst which single sequence per species were subjected to phylogeny study along with CPOs. Our phylogenetic study show that the UPOs are distributed in Basidiomycota and Ascomycota phyla of fungi. The sequence analysis helped to classify the UPOs into five distinct subfamilies: classic AaeUPO and four new subfamilies with potential new traits. We have also shown that each of these five subfamilies (supported by) have their own signature motifs. Surprisingly, some of the CPOs appeared to be a type of UPOs indicating that they were previously identified incorrectly. Selection pressure was observed on important motifs in UPOs which could have driven their functional divergence. Furthermore, the sites having different evolutionary rates caused by the functional divergence were also identified on some motifs along with the other relevant amino acid residues. Finally, we predicted critical amino acids responsible for the functional divergence in the UPOs and identified some sequence differences among UPOs, CPOs, and MroUPO to predict it’s ranging behavior.ConclusionThis study discovers new UPOs, provides a glimpse of their evolution from CPOs, and presents new insight on their functional divergence. We present a new classification of UPOs and shed new light on its phylogenetics. These different UPOs may exhibit a wide range of characteristics and specificities which may help in various fields of synthetic chemistry and industrial biocatalysts, and may as well lead to an advancement towards the understanding of physiological role of UPOs in fungi.

Highlights

  • Unspecific peroxygenase (UPO), known as aromatic peroxygenase (APO), are newly discovered extracellular enzymes which belong to heme-thiolate proteins obtained from fungal species [1]

  • The first Unspecific peroxygenases (UPO) enzyme was discovered in Agrocybe aegerita (AaeUPO) which belongs to Basidiomycota, commonly known as Black

  • We obtained 113 putative UPO sequences from the fungal kingdom which belong to 35 different fungal species including different strains

Read more

Summary

Introduction

Unspecific peroxygenase (UPO), known as aromatic peroxygenase (APO), are newly discovered extracellular enzymes which belong to heme-thiolate proteins obtained from fungal species [1]. Fungal UPOs are characterized for catalyzing a large variety of reactions such as epoxidation, hydroxylation, dealkylations, oxidation of aromatic and heterocyclic compounds, organic heteroatoms, inorganic halides, and one- and two- electron oxidations as well [6,7,8]. They exhibit various useful properties such as high specific activity, catalytic activity, and specificity, catalyze reactions with inexpensive peroxides and cofactors (Mg2+), stability and it is water-soluble in nature due to a high degree of glycosylation.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.