Abstract

At present, there is a lack of understanding of the combined ecotoxicity of carbon-based nanomaterials and co-contaminants. In this paper, we report on the toxicity of three carbon nanomaterials (fullerene-soot, multiwall carbon nanotubes, and graphene). Two standardized toxicity bioassays, the immobilization of the invertebrate Daphnia magna and the bioluminescence inhibition of the marine bacteria Vibrio fischeri, have been used. Synergistic and antagonistic effects of binary mixtures composed of fullerene soot and organic co-contaminants as malathion, glyphosate, diuron, triclosan, and nonylphenol were assessed. The isobologram method was used to evaluate the concentrations producing an effect, in comparison to those effects expected by a simple additive approach. In this study, antagonism was the predominant effect. However, synergism was also observed as in the case of D. magna exposed to mixtures of malathion and fullerene soot. D. magna was shown to be the most sensitive assay when carbon nanomaterials were present. Toxicity to D. magna was as follows: fullerene soot > multiwall carbon nanotubes > graphene. These results were proportional to the size of aggregates, smaller aggregates being the most toxic. The vector function of nanomaterials aggregates and the unexpected release inside living organisms was proven for malathion. These results highlight new insights on the risks associated with the release of carbon nanomaterials into the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.