Abstract

Helicoverpa armigera (cotton bollworm) is one of the most destructive pests worldwide. Due to resistance to Bacillus thuringiensis and conventional insecticides, an effective management strategy to control this pest is urgently needed. Spinosad, a natural pesticide, is considered an alternative; however, the mechanism underlying the developmental effects of sublethal spinosad exposure remains elusive. In this study, the mechanism was examined using an insect model of H. armigera. Results confirmed that exposure to sublethal spinosad led to reduced larval wet weight, delayed larval developmental period, caused difficulty in molting, and deformed pupae. Further investigation demonstrated that exposure to sublethal spinosad caused a significant decrease in 20E titer and increase in JH titer, thereby leading to the discordance between 20E and JH titers, and consequently alteration in the expression levels of HR3 and Kr-h1. These results suggested that sublethal spinosad caused hormonal disorders in larvae, which directly affect insect development. Our study serves as a reference and basis for the toxicity evaluation of spinosad on molting and pupation in insect metamorphosis, which may contribute to identifying targets for effective control of cotton bollworm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.