Abstract

AbstractWe have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of pure-hydrogen DA white dwarfs in the range 5.0 < log g < 9.0. Our grid covers the full ZZ Ceti instability strip where pulsating DA white dwarfs are located. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We present improved atmospheric parameter determinations based on spectroscopic fits with 3D model spectra, allowing for an updated definition of the empirical edges of the ZZ Ceti instability strip. Our 3D simulations also precisely predict the depth of the convection zones, narrowing down the internal layers where pulsation are being driven. We hope that these 3D effects will be included in asteroseismic models in the future to predict the region of the HR diagram where white dwarfs are expected to pulsate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.