Abstract

We demonstrated that a mass density and size effect are dominant factors to limit the transport properties of very thin amorphous Sn-doped In2O3 (a-ITO) films. a-ITO films with various thicknesses (t) ranging from 5 to 50 nm were deposited on non-alkali glass substrates without intentional heating of the substrates by reactive plasma deposition with direct-current arc discharge. a-ITO films with t of more than 10 nm showed a high Hall mobility (μH) of more than 50 cm2/V s. For 5-nm-thick a-ITO films, we found that μH was as high as more than 40 cm2/V s. X-ray reflectivity measurement results revealed that the mass density (dm) determined the carrier transport in a-ITO films. For a-ITO films with t of more than 10 nm, dm had a high value of 7.2 g/cm3, whereas a-ITO films with t of less than 10 nm had low dm ranging from 6.6 to 6.8 g/cm3. Quantitative new insight from a size effect on the carrier transport is given for a-ITO films with t of less than 10 nm. This study shows that the ratio of t to mean free path of carrier electrons governed μH.

Highlights

  • Sn-doped indium oxide (ITO) has been mostly applied to transparent conducting oxide (TCO) films

  • We report the successful fabrication of very thin TCO films (t < 50 nm) based on amorphous-phase Tin-doped indium oxide (ITO) (a-ITO) films with a high μH by using reactive plasma deposition (RPD)

  • The a-ITO films with t ranging from 5 to 50 nm were fabricated with an oxygen (O2) gas flow rate (OFR) of 20 or 30 sccm without intentional heating of the substrate

Read more

Summary

Introduction

Sn-doped indium oxide (ITO) has been mostly applied to transparent conducting oxide (TCO) films. Indium oxide (In2O3) has a bixbyite crystal structure (space group Ia-3, number 206), which comprises distorted InO6 octahedra containing some oxygen defects. This is a periodic structure that produces structural vacancies (Vstr). Both an oxygen (O) and a structural vacancy are shared between adjacent polyhedra with the result that the polyhedra are joined at a corner occupied by the O, which is referred to as corner sharing hereafter. Two O atoms are shared between adjacent polyhedra with the result that the polyhedral are joined along the entire edge, referred to as edge sharing hereafter. The edge-sharing structure allows a large overlap between the wavefunctions of 5s and 5p orbitals of the valence electrons of In atoms owing to the short interatomic

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call