Abstract

There have been extensive applications of waste activated sludge (WAS) in anaerobic co-digestion (AcoD). Nonetheless, mechanisms through which AcoD systems maintain stability, particularly under nutrient-stressed conditions, are under-appreciated. In this study, the role of WAS in a nutrient-stressed WAS-food waste AcoD system was re-evaluated. Our findings demonstrated that WAS-based co-digestion increased methane production (by 20–60%) as WAS bolsters such systems’ resilience via establishing a core niche-based microbial balance. The carbon utilization investigation suggested a microbial niche balance is attainable if two conditions are satisfied: 1) hydrolysis efficiency is greater than 50%; and 2) both the acidogenesis-to-hydrolysis and acetogenesis-to-hydrolysis efficiencies surpass 0.5. Metagenomic assembly genome (MAG) analysis indicated that the versatile metabolic characteristics strengthened the microbial niche balance, rendering the system resilient and efficient through a syntrophic mode, contributing to both acidogenesis and acetogenesis. The findings of this study provide new insights into the ecological effects of WAS on AcoD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call