Abstract

Here, we investigate competitive adsorption and photocatalytic reaction over TiO2@SiO2: NO conversion efficiency decreases by 29.1%, and the adsorption capacity decreases from 0.125 to 0.095 mmol/g due to the influence of SO2. According to identification and comparative analysis of the IR signal, SO2 has little effect on the NO conversion route and intermediates (adsorbed NO → nitrite → nitrate), but accelerates the deactivation of catalysts. The electronic interaction scheme from density functional theory (DFT) confirms that surface hydroxyls create an unsaturated coordination of neighboring Ti or O atoms, which is favorable for NO/SO2 adsorption on anatase (101). In addition, the lone pair electrons of N or S atoms prefer to be delocalized and form covalent bonds with active surface-O on the (101) facet with terminal hydroxyls. However, preadsorbed SO2 could offset the increase of hydroxyls and strongly inhibit NO adsorption, which is consistent with the result performance evaluation. A possible reaction mechanism characterized by oxygen vacancies and·O2- is proposed, while the essential reason of catalyst deactivation and regeneration is theoretically analyzed based on the experimental and DFT calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.