Abstract
A new “Mirror Langmuir Probe” diagnostic, combined with a double-coil scanning magnetic probe, is used to interrogate Alcator C-Mod's quasi-coherent mode (QCM) with unprecedented detail. In ohmic EDA H-modes, the QCM is found to reside in a region of positive radial electric field, with a radial width (∼3 mm) that spans open and closed field line regions. Large amplitude, in-phase sinusoidal bursts (∼100 kHz) in density, electron temperature, and plasma potential are observed, with potential lagging density by ∼16°, producing an outward radial transport velocity of ∼10 m/s. Mode propagation corresponds to the sum of local E × B and electron diamagnetic drift velocities. Poloidal magnetic field fluctuations project to current filaments carrying peak current densities of ∼25 A/cm2. An evaluation of parallel electron force balance (Ohm's law) over a fluctuation cycle indicates a significant electromotive component. Interchange drive is also a contributor in the current continuity (vorticity) equation. Thus, the QCM is primarily a separatrix-spanning electron drift-wave with interchange and electromagnetic contributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.