Abstract

Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake. Pure ZIF-90 was synthesized under ambient pressure at 60 °C for 90 min using the conventional solvothermal method in an acetone–water solution, while under microwave irradiation it was formed in only 5 min at 80 °C. Altering methanol, water and acetone in the reaction mixture significantly affected the structural and water adsorption properties of ZIF-90s, which were monitored via PXRD, TGA, nitrogen and water sorption, and SEM. The highly efficient, less toxic, low-cost and activation-free microwave synthesis resulted in the formation of ZIF-90 nanoparticles that exhibited the highest maximum water adsorption capacity (0.37 g/g) and the best hydrothermal stability between water adsorption at 30 °C and desorption at 100 °C at 12.5 mbar among all the products obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call