Abstract
Rapid shape evolutions near A = 100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z <= 40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited states in the neutron-rich nucleus Rh-109. The measurements confirm the persistence at higher Z of similarly large deformations observed near Z = 40. Moreover, we show that new self-consistent mean-field calculations, with proper treatment of the odd nucleon, are able to reproduce the coexisting triaxial and highly deformed configurations revealing, for the first time, the important contribution of the unpaired nucleon to these different shapes based on the blocking of specific single-particle orbitals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.