Abstract

The crystallography and three-dimensional (3-D) morphology of Widmanstatten proeutectoid ferrite precipitates are examined in an Fe-0.12 wt pct C-3.28 wt pct Ni steel isothermally reacted at 650 °C, 600 °C, and 550 °C. This article integrates new orientation mapping (OM) results with the findings of a companion article to this one on the 3-D morphology of proeutectoid ferrit[1] and an earlier transmission electron microscopy (TEM) study which is reanalyzed here in light of the new OM and 3-D results. All of these studies were performed for the same alloy and heat treatments. The 3-D morphologies and distributions of proeutectoid ferrite precipitates are now known to often be quite different from those deduced by conventional two-dimensional (2-D) microscopy techniques. The present crystallographic studies indicate that “primary” ferrite (nucleated directly on prior austenite grain boundaries) forms monolithic single crystals and can be approximated as elongated triangular pyramids. “Secondary” ferrite morphologies can be described as laths and plates branching into the austenite from a thick and/or broad allotriomorphic ferrite base. These secondary Widmanstatten branches are composed of many misoriented crystals with ferrite: ferrite boundaries between them and appear to approach a common orientation as they extend into the austenite grain. Implications of the current findings on existing growth and crystallography models are discussed, and a preliminary hypothesis or mechanism of ferrite formation has been proposed to account for the present observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call