Abstract

This study addresses the research gap in understanding the differences in straw decomposition and variations in humic substances (HS) extracted from various treatment conditions. The aim is to explore the potential of soluble straw HS in remediating heavy metal pollution in soils. The study characterizes straw decomposition structures using scanning electron microscopy (SEM) and X-ray diffraction (XRD), while employing gel permeation chromatography (GPC) and fluorescence spectroscopy (EEM) to analyze the molecular weight and degree of humification of extracted straw HS. The removal efficiency of HS for heavy metals is assessed, with a focus on aerobic humic substances (AE-HS) showing the highest potential for heavy metal removal. Spectral analysis and mass spectrometry analysis reveal the role of phenolic compounds, carboxylic acids, and aromatic compounds in AE-HS, forming humates or complexes to remove heavy metals from contaminated soil. Notably, the optimized AE-HS achieved the highest removal efficiency of 96.18 %, 82.75 %, 60.43 %, and 41.66 % for cadmium, copper, zinc, and lead, respectively. This study provides new insights into the preparation of straw for use as a heavy metal remover and has implications for the use of straw humic substances in soil remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.