Abstract

Macrophage elastase, or MMP-12, is mainly produced by alveolar macrophages and is believed to play a major role in the development of chronic obstructive pulmonary disease (COPD). The catalytic domain of MMP-12 is unique among MMPs in that it is very highly active on numerous substrates including elastin. However, measuring MMP-12 activity in biological fluids has been hampered by the lack of highly selective substrates. We therefore synthesized four series of fluorogenic peptide substrates based on the sequences of MMP-12 cleavage sites in its known substrates. Human MMP-12 efficiently cleaved peptide substrates containing a Pro at P3 in the sequence Pro-X-X↓Leu but lacked selectivity towards these substrates compared to other MMPs, including MMP-2, MMP-7, MMP-9 and MMP-13. On the contrary, the substrate Abz-RNALAVERTAS-EDDnp derived from the CXCR5 chemokine was the most selective substrate for MMP-12 ever reported. All substrates were cleaved more efficiently by full-length MMP-12 than by its catalytic domain alone, indicating that the C-terminal hemopexin domain influences substrate binding and/or catalysis. Docking experiments revealed unexpected interactions between the peptide substrate Abz-RNALAVERTAS-EDDn and MMP-12 residues. Most of our substrates were poorly cleaved by murine MMP-12 suggesting that human and murine MMP-12 have different substrate specificities despite their structural similarity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.