Abstract

Many undergraduate organic chemistry books do not agree with the order of relative stability of alkenes towards hydrogenation reactions. Although they ascribe the stability of alkenes to the number and spatial position of the alkyl groups attached to the vinyl carbon atoms, results from the quantum theory of atoms in molecules indicate that the influence of an alkyl substituent on the stability of unsaturated hydrocarbons arises from the slight removal of electron density of the π bond, not from donation of their charge density to unsaturated carbon atoms as stated in many text books. There is an inverse relation between delocalization index--the number of shared electrons between two atoms, or Wiberg bond index of C=C bond--and the number of methyl groups attached to the vinyl carbon atoms. Electron withdrawing groups (EWGs) attached to unsaturated carbon atoms of alkenes and alkynes have two different behaviors: slight EWGs (alkyl groups) stabilize unsaturated carbon atoms while the strong EWG destabilizes the unsaturated carbon atoms. Generalized valence bond theory was also used to study the ambiguous behavior of fluorine substituents bonded to vinyl carbon atoms.

Highlights

  • The first calorimetric measurements of unsaturated compounds were not very precise

  • The alkenes studied in this work ranged from ethylene to 2,3-dimethyl-2-butene

  • The influence of alkyl groups in the order of stability of the studied alkenes derived from the calculation of the free energy of hydrogenation using B3LYP/6-311++G(d,p) level of theory

Read more

Summary

Introduction

The first calorimetric measurements of unsaturated compounds were not very precise. In order to improve their precision, G.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.