Abstract
Excited-state double proton transfer (ESDPT) in the hydrogen-bonded 2-(1H-pyrazol-5-yl)pyridine with propyl alcoholic partner (PPP) was theoretically investigated by time-dependent density functional theory (TDDFT) method. Great changes have taken place for the calculated geometric structures, the electron density features and vibrational spectrum of PPP system in S0 and S1 state. Our results have demonstrated that ESDPT reaction happens within the system upon photoexcitation. We also found that the ESDPT process is facilitated by the electronically excited state intermolecular hydrogen bond strengthening. Particularly, after the photoexcitation from HOMO(π) to the LUMO(π∗), the rearrangement of electronic density distribution of frontier molecular orbitals (MOs) on pyridine and the pyrazol moieties exhibits a very important positive factor for the ESDPT. Furthermore, by the investigation of the stretching vibrations of NH and OH groups, the infrared (IR) spectroscopic results provide us not only a theoretical evidence of ESDPT, but also a considerable clue to characterize the nature of intermolecular reaction. In addition, efforts have also been devoted towards calculating the absorption peak, which shows good consistency with the experimental result of the studied system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.