Abstract

Photocatalysis has been regarded as a sustainable strategy for wastewaters remediation, and sulfite addition could significantly accelerate the photocatalytic performances. However, the related mechanisms are still not well understood. Here, we for the first time found that plasmonic Bi and oxygen vacancies were in-operando generated on BiOX (X = Cl, Br, I) in the presence of sulfite under light irradiation. The oxidative degradation rate constants of 4-nitrophenol, bisphenol A, and phenol were improved by about 11.5, 4.7, and 12.2 times on BiOBr and 9.1, 1.6, and 3.1 times on BiOCl with addition of 5 mM sulfite, while the photocatalytic reduction rate of 4-nitrophenol to 4-aminophenol was promoted by approximate 31.7 times on BiOI. The results indicated that sulfite could improve the photooxidation ability of BiOBr and BiOCl and the photoreduction performance of BiOI, resulted from the improved light absorption and separation of photogenerated charge carriers. This work can provide exploratory platforms for understanding and maximizing the sulfite-assisted BiOX photocatalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.