Abstract

In biological systems, the unprompted assembly of DNA molecules by cationic ligands into condensed structures is ubiquitous. The ability of ligands to provoke DNA packaging is crucial to the molecular organization and functional control of DNA, yet their underlined physical roles have remained elusive. Here, we have examined the DNA condensation mechanism of four cationic ligands, including their primary DNA-binding modes through extensive biophysical studies. We observed contrasting changes for these ligands binding to poly[dGdC]:poly[dGdC] (GC-DNA) and poly[dAdT]:poly[dAdT] (AT-DNA). Based on a CD spectroscopic study, it was confirmed that only GC-DNA undergoes B- to Ψ-type DNA transformation in the presence of ligands. In the fluorescence displacement assay (FDA), the ability of ligands to displace GC-DNA-bound EtBr follows the order: protamine21+ > cohex3+ > Ni2+ > spermine4+, which indicates that there is no direct correlation between the ligand charge and its ability to displace the drug from the DNA, indicating that GC-DNA condensation is not just influenced by electrostatic interaction but ligand-specific interactions may also have played a crucial role. Furthermore, the detailed ITC-binding studies suggested that DNA-ligand interactions are generally driven by unfavorable enthalpy and favorable entropy. The correlations from various studies insinuate that cationic ligands show major groove binding as one of the preferred binding modes during GC-DNA condensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call