Abstract

A combination of state-of-the art in situ one- and two-dimensional NMR spectroscopy and density functional theory (DFT) calculations have been employed for the first time to investigate the role of amines in the synthesis of aluminophosphate molecular sieves in ionic liquids (ILs). In situ rotating-frame nuclear Overhauser effect spectroscopy (ROESY) was used to demonstrate that the hybrid of imidazolium ionic liquids with organic amines, such as morpholine, connected through a hydrogen bond can be formed in the gel during the crystallization of molecular sieves. By combining the characterizations of the final solid products obtained by using XRD analyses, solid-state NMR spectroscopy, thermogravimetric analysis, and DFT calculation results, it was verified that the hybrid between morpholine and the imidazolium cation in the initial preparation stage can act as the structure-directing agent (SDA) for the synthesis of AFI-structured aluminophosphate molecular sieves. Our findings may suggest a synthesis mechanism of molecular sieves in ionic liquids in which the IL-organic amine hybrid is required in the nucleation step, whereas the crystal growth occurs through the occlusion of ionic liquids in the zeolite channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.