Abstract

BackgroundThe monoclonal antibody natalizumab (NAT) inhibits the migration of lymphocytes throughout the blood–brain barrier by blocking very late antigen (VLA)-4 interactions, thereby reducing inflammatory central nervous system (CNS) activity in patients with multiple sclerosis (MS). We evaluated the effects of different NAT treatment regimens.MethodsWe developed and optimised a NAT assay to measure free NAT, cell-bound NAT and VLA-4 expression levels in blood and cerebrospinal fluid (CSF) of patients using standard and prolonged treatment intervals and after the cessation of therapy.ResultsIn paired CSF and blood samples of NAT-treated MS patients, NAT concentrations in CSF were approximately 100-fold lower than those in serum. Cell-bound NAT and mean VLA-4 expression levels in CSF were comparable with those in blood. After the cessation of therapy, the kinetics of free NAT, cell-bound NAT and VLA-4 expression levels differed. Prolonged intervals greater than 4 weeks between infusions caused a gradual reduction of free and cell-bound NAT concentrations. Sera from patients with and without NAT-neutralising antibodies could be identified in a blinded assessment. The NAT-neutralising antibodies removed NAT from the cell surface in vivo and in vitro. Intercellular NAT exchange was detected in vitro.ConclusionsIncorporating assays to measure free and cell-bound NAT into clinical practice can help to determine the optimal individual NAT dosing regimen for patients with MS.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0635-2) contains supplementary material, which is available to authorized users.

Highlights

  • The monoclonal antibody natalizumab (NAT) inhibits the migration of lymphocytes throughout the blood–brain barrier by blocking very late antigen (VLA)-4 interactions, thereby reducing inflammatory central nervous system (CNS) activity in patients with multiple sclerosis (MS)

  • Blockade of the interaction between very late antigen (VLA)-4 and vascular cell adhesion molecule (VCAM)-1 at the blood–brain barrier (BBB) reduces the transmigration of leukocytes into the brain, which reduces inflammatory lesions in MS patients [2]. It has a negative impact on central nervous system (CNS) immunosurveillance, which is responsible for development of progressive multifocal leukoencephalopathy (PML) [3, 4]

  • Free NAT levels are 100-fold lower in cerebrospinal fluid (CSF) relative to serum Mean free NAT serum concentration was 18.5 μg/ml (SD ± 15.3) before NAT infusion and 86.3 μg/ml (SD ± 31.3) immediately after NAT infusion, which represents an increase of approximately 4.7 times (Fig. 1a)

Read more

Summary

Introduction

The monoclonal antibody natalizumab (NAT) inhibits the migration of lymphocytes throughout the blood–brain barrier by blocking very late antigen (VLA)-4 interactions, thereby reducing inflammatory central nervous system (CNS) activity in patients with multiple sclerosis (MS). Blockade of the interaction between very late antigen (VLA)-4 and vascular cell adhesion molecule (VCAM)-1 at the blood–brain barrier (BBB) reduces the transmigration of leukocytes into the brain, which reduces inflammatory lesions in MS patients [2]. It has a negative impact on central nervous system (CNS) immunosurveillance, which is responsible for development of progressive multifocal leukoencephalopathy (PML) [3, 4]. There is interest to determine NAT pharmacokinetics and pharmacodynamics in patients with MS who switch to other treatments [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call