Abstract

Hydrogen is a clean and energetic fuel, and its oxidation mechanism is a subset of the oxidation mechanisms of all hydrocarbons. Therefore, the validation of the available kinetic schemes is of great importance. In the current study, experimental measurements of laminar flame speeds and modeling studies were performed for H2–air premixed flames over a wide range of equivalence ratios (0.5–4.0) and pressures (0.2–3bar). The large scale in mixture and thermodynamic conditions allows a better understanding of the peculiar behavior of hydrogen flame speeds with pressure. Two very recent detailed chemical kinetic mechanisms for hydrogen combustion were selected. Excellent agreement was observed between calculations and experimental results, confirming the validity of the kinetic schemes selected. The kinetic analyses performed allow proposing an explanation for the nonmonotonic variation of hydrogen/air flame speed with pressure observed in the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.