Abstract

Adipose tissue-derived stem cells (ASCs) can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, easily accessible, suitable for cultivation and expansion invitro and preparation for therapeutic approaches. Amongst these therapeutic approaches are tissue engineering and nervous system disorders such as spinal cord injuries. For such treatment, ASCs have to be reliably differentiated in to the neuronal direction. Therefore, we investigated the neural differentiation potential of ASCs using protocols with neurogenic inductors such as valproic acid and forskolin, while dog brain tissue served as control. Morphological changes could already be noticed 1h after neuronal induction. Gene expression analysis revealed that the neuronal markers nestin and βIII-tubulin as well as MAP2 were expressed after induction of neuronal differentiation. Additionally, the expression of the neurotrophic factors NGF, BDNF and GDNF was determined. Some of the neuronal markers and neurotrophic factors were already expressed in undifferentiated cells. Our findings point out that ASCs can reliably be differentiated into the neuronal lineage; therefore, these cells are a suitable cell source for cell transplantation in disorders of the central nervous system. Follow-up studies would show the clinical benefit of these cells after transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call