Abstract

The molecular dynamics of organic semiconductor blend layers are likely to affect the optoelectronic properties and the performance of devices such as solar cells. We study the dynamics (5-50 ps) of the poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) blend by time-of-flight quasi-elastic neutron scattering, at temperatures in the range 250-360 K, thus spanning the glass transition temperature region of the polymer and the operation temperature of an OPV device. The behavior of the QENS signal provides evidence for the vitrification of P3HT upon blending, especially above the glass transition temperature, and the plasticization of PCBM by P3HT, both dynamics occurring on the picosecond time scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.