Abstract

A unique feature in mammalian erythropoiesis is the dramatic chromatin condensation followed by enucleation. This step-by-step process starts at the beginning of terminal erythropoiesis after the hematopoietic stem cells are committed to erythroid lineage. Although this phenomenon is known for decades, the mechanisms of chromatin condensation and enucleation remain elusive. Recent advances in cell and molecular biology have started to reveal the molecular pathways in the regulation of chromatin condensation, the establishment of nuclear polarity prior enucleation, and the rearrangement of actin cytoskeleton in enucleation. However, many challenging questions, especially whether and how the apoptotic mechanisms are involved in chromatin condensation and how to dissect the functions of many actin cytoskeleton proteins in cytokinesis and enucleation, remain to be answered. Here I review our current understanding of mammalian erythroid chromatin condensation and enucleation during terminal differentiation with a focus on more recent studies. I conclude with my perspective of future works in this rising topic in developmental and cell biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.