Abstract

The controlled synthesis of ZnO at the micro- and nanoscale has been the focus of significant research due to its importance in electrical and optoelectronic applications, and the potential of tuning its properties at the crystal formation stage. We present a detailed study of ZnO growth processes which supports and consolidates previous findings and gives a clearer understanding of the mechanism of ZnO formation. The influence of synthesis conditions on ZnO formation was investigated by comparison of two different growth routes (Zn(CH3COO)2–NH3 and Zn(NO3)2·6H2O−HMTA) both known to result in the formation of wurtzite structured, twinned hexagonal rods of ZnO. The identities of the solid phases formed and supernatants were confirmed by data from SEM, XRD, FTIR, XPS, TGA, and ICP-OES analysis; giving insight into the involvement of multistep pathways. In both cases, reaction takes place via intermediates known as layered basic zinc salts (LBZs) which only later transform to the oxide phase. In the ZnAc2–NH...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call