Abstract
The controlled synthesis of ZnO at the micro- and nanoscale has been the focus of significant research due to its importance in electrical and optoelectronic applications, and the potential of tuning its properties at the crystal formation stage. We present a detailed study of ZnO growth processes which supports and consolidates previous findings and gives a clearer understanding of the mechanism of ZnO formation. The influence of synthesis conditions on ZnO formation was investigated by comparison of two different growth routes (Zn(CH3COO)2–NH3 and Zn(NO3)2·6H2O−HMTA) both known to result in the formation of wurtzite structured, twinned hexagonal rods of ZnO. The identities of the solid phases formed and supernatants were confirmed by data from SEM, XRD, FTIR, XPS, TGA, and ICP-OES analysis; giving insight into the involvement of multistep pathways. In both cases, reaction takes place via intermediates known as layered basic zinc salts (LBZs) which only later transform to the oxide phase. In the ZnAc2–NH...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.