Abstract

Trichoderma is internationally recognized as a biocontrol fungus for its broad-spectrum antimicrobial activity. Intriguingly, the crosstalk mechanism between the plant and Trichoderma is dynamic, depending on the Trichoderma strains and the plant species. In our previous study, the Trichoderma virens 192-45 strain showed better pathogen inhibition through the secretive non-volatile and volatile substrates. Therefore, we studied transcriptional and metabolic responses altered in creeping bentgrass (Agrostis stolonifera L.) with T. virens colonization prior to a challenge with Clarireedia homoeocarpa. This fungal pathogen causes dollar spot on various turfgrasses. When the pathogen is deficient, the importance of T. virens to the enhancement of plant growth can be seen in hormonal production and microbe signaling, such as indole-3-acrylic acid. Therefore, these substrates secreted by T. virens and induced genes related to plant growth can be the 'pre-defense' for ensuing pathogen attacks. During C. homoeocarpa infection, the Trichoderma-plant interaction activates defense responses through the SA- and/or JA-dependent pathway, induced by T. virens and its respective exudates, such as oleic, citric, and stearic acid. Thus, we will anticipate a combination of genetic engineering and exogenous application targeting these genes and metabolites, which could make creeping bentgrass more resistant to dollar spot and other pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call