Abstract

The mechanisms underlying the distribution of many toxic metal(loid)s in shoots and metal(loid) transport to grains have been well documented in the quest for food safety but there remains a lack of knowledge on thallium (Tl) accumulation in food crops. Here, field investigations combined with a glasshouse pot experiment were conducted to investigate the characteristics of Tl distribution and accumulation in coix, a major food crop in south Guizhou province, China, and the role of node I in restricting Tl transport to the seed. Fourteen percent of coix seed samples collected from the Lanmuchang Tl-As-Hg mine contained higher Tl concentrations than the recommended limit for foods and feedstuffs in Germany (0.5 mg kg−1), with the highest exceedance rate of the metal(loid)s determined, when grown in soils surrounding the mine with a very high Tl concentration of 0.07–89.5 mg kg−1 and a general low pH of 4.19–6.48. Thallium concentrations were higher in coix nodes than in internodes, followed by roots and grains. The Tl translocation factors from node I to grains were 0.01–0.21 and were the lowest of any translocation factors between different tissues. Node I is therefore the key tissue restricting Tl transport to coix grains. Thallium was localized mainly in the diffuse vascular bundles (DVBs) in node I. The co-localization of Tl and sulfur in the DVBs and Tl contamination-induced phytochelatin (PC) accumulation indicate that Tl storage in the DVBs involving complexation with PCs in node I is an important process in Tl accumulation in coix grains. Moreover, the area of DVBs in node I increased with increasing soil Tl pollution level, providing more channels for Tl transport to the panicles and grains and thereby acting as a key factor restricting Tl transport to the grains. These results provide new insights into the key role of node I in Tl accumulation in coix grains and indicate key points to minimize Tl accumulation in grains for food safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call