Abstract

ABSTRACT We model helium-rich stars with solar metallicity (X = 0.7, Z = 0.02) progenitors that evolve to form AM Canum Venaticorum systems through a helium-star formation channel, with the aim to explain the observed properties of Gaia14aae and ZTFJ1637+49. We show that semidegenerate, H-exhausted (X ≤ 10−5), He-rich (Y ≈ 0.98) donors can be formed after a common envelope evolution (CEE) phase if either additional sources of energy are used to eject the common envelope, or a different formalism of CEE is implemented. We follow the evolution of such binary systems after the CEE phase using the Cambridge stellar evolution code when they consist of a He-star and a white dwarf accretor, and report that the mass, radius, and mass-transfer rate of the donor, the orbital period of the system, and the lack of hydrogen in the spectrum of Gaia14aae and ZTFJ1637+49 match well with our modelled trajectories wherein, after the CEE phase Roche lobe overflow is governed not only by the angular momentum loss (AML) owing to gravitational wave radiation (AMLGR) but also an additional AML owing to α–Ω dynamos in the donor. This additional AML is modelled with our double-dynamo (DD) model of magnetic braking in the donor star. We explain that this additional AML is just a consequence of extending the DD model from canonical cataclysmic variable donors to evolved donors. We show that none of our modelled trajectories match with Gaia14aae or ZTFJ1637+49 if the systems are modelled only with AMLGR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call