Abstract

The fresco technique performed with slaked lime putty as binding material has been well known since Antiquity. However, the geochemical processes that occur on the surface have been generally described as part of the carbonation process of the intonaco itself. When approaching this technique from experimental archaeology, it has been observed for the first time that during the execution period (from 0 to 20 h, approximately) the processes occurring on the surface of the stucco are different from those occurring inside. Furthermore, these processes lead to the formation of an epigenetic film of specific texture, stiffness and compactness. This study investigates the formation and evolution of this surface film using a series of slaked lime putty stucco test tubes. Samples were extracted at different intervals and subsequently analyzed by polarized optical microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Results indicate that the development of the film, composed of an amorphous gel-like stratum and a micro-crystalline stratum, occurs in parallel to the carbonation occurring inside the stucco. Moreover, this process does not respond to the classical geological processes of calcium carbonate formation. It was also observed that its presence slows down the carbonation in the underlying strata (intonaco, intonachino, arriccio, etc.) and that the surface becomes more crystalline over time. The identification of this film has implications for the field of the conservation–restoration of fresco paintings and lime-based wall paintings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call