Abstract

In a recent study, Lawson & Dawson (J. Fluid Mech., vol. 780, 2015, pp. 60–98) present experimental results on the fine-scale structure of turbulence, which are obtained with a novel variant of particle image velocimetry, to elucidate the relation between the small-scale structure, dynamics and statistics of turbulence. The results are carefully validated against direct numerical simulation data. Their extensive study focuses on the mean structure of the velocity gradient and the pressure Hessian fields for various small-scale flow topologies. It thereby reveals the dynamical impact of turbulent strain and vorticity structures on the velocity gradient statistics through non-local interactions, and points out ways to improve low-dimensional closure models for the dynamics of small-scale turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.