Abstract

The hydroxylamine-enhanced Fe(II)/peracetic acid (PAA) process is a promising advanced oxidation process (AOP) with the generation of reactive species (RS) including RO•, •OH and Fe(IV). Nevertheless, it is still challenging to identify which RS is the major intermediate oxidant, and the reasons why the optimal condition is pH 4.5 rather than 3.0 are also unclear. Herein, the generation of RS and their contribution to the degradation of three micro-pollutants were explored. The quenching experiments and pseudo first-order kinetic model demonstrated that RO• rather than the other two RS were predominant. Then the overall generation and evolution pathways of RS were depicted. The elevation of pH (3.0–4.5) would accelerate the Fe(II)/Fe(III) redox cycle through the enhanced reduction of Fe(III) by hydroxylamine and induce the conversion of Fe(IV) to RO•, which benefited naproxen degradation. While the adverse Fe(III) precipitation would dominate the reduced degradation performance with the solution pH higher than 4.5. The elevation of PAA and Fe(II) dosages sped up the PAA activation, while excess hydroxylamine could consume the formed RS and exhibited an inhibitory effect. This study helps further understand the role of HA and differentiate the contribution of RS in the emerging PAA-based AOPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call