Abstract

The cultivation of the N, N-dimethylformamide (DMF)-degrading methanogenic consortium is considered difficult. In this study, an up-flow anaerobic sludge blanket (UASB) was inoculated with activated sludge in order to culture the DMF-degrading anaerobic sludge under a constant DMF concentration of approximately 2000 mg L−1. While the UASB realized a nearly 100% degradation of DMF and a high methane production of 1.03 L d−1 for the first two months, both the removal efficiency and methane production continued to decrease until the end. The characterization of the prokaryotic community reveals that those DMF-hydrolyzing bacteria (DHB) originating from the activated sludge were responsible for the effective degradation of DMF. However, even when fed with a constant concentration of DMF, the DHB kept decreasing all the time while methane-producing archaea were rapidly cultivated. The variation of prokaryotic community suggests that the DHB could not proliferate anaerobically without utilizing the intermediate products from the hydrolysis of DMF, resulting in an unstable DMF-degrading consortium. The cultivation of DHB under the anaerobic condition of the UASB was therefore difficult. The reason it was not possible to culture a DMF-degrading methanogenic consortium in this study is that the DHB are denitrifying bacteria which require nitrate for their cell growth under the anaerobic condition. The solution to maintain the abundance of these DHB is to add doses of nitrate into the system. Nitrate is likely to help these DHB recapture intermediates from methanogens, enabling them to perform a heterotrophic denitrification by using a small proportion of DMF as the carbon source while simultaneously maintaining the cell growth of DHB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.