Abstract

Dichalcogenido-imidodiphosphinates, [N(PR(2)E)(2)](-) (R = alkyl, aryl), are chelating ligands that readily form cyclic complexes with main group metals, transition metals, lanthanides, and actinides. Since their discovery in the early 1960s, researchers have studied the structural chemistry of the resulting metal complexes (where E = O, S, Se) extensively and identified a variety of potential applications, including as NMR shift reagents, luminescent complexes in photonic devices, or single-source precursors for metal sulfides or selenides. In 2002, a suitable synthesis of the tellurium analogs [N(PR(2)Te)(2)](-) was developed. In this Account, we describe comprehensive investigations of the chemistry of these tellurium-centered anions, and related mixed chalcogen systems, which have revealed unanticipated features of their fundamental structure and reactivity. An exhaustive examination of previously unrecognized redox behavior has uncovered a variety of novel dimeric arrangements of these ligands, as well as an extensive series of cyclic cations. In combination with calculations using density functional theory, these new structural frameworks have provided new insights into the nature of chalcogen-chalcogen bonding. Studies of metal complexes of the ditellurido ligands [N(PR(2)Te)(2)](-) have revealed unprecedented structural and reaction chemistry. The large tellurium donor sites confer greater flexibility, which can lead to unique structures in which the tellurium-centered ligand bridges two metal centers. The relatively weak P-Te bonds facilitate metal-insertion reactions (intramolecular oxidative-addition) to give new metal-tellurium ring systems for some group 11 and 13 metals. Metal tellurides have potential applications as low band gap semiconductor materials in solar cells, thermoelectric devices, and in telecommunications. Practically, some of these telluride ligands could be applied in these industries. For example, certain metal complexes of the isopropyl-substituted anion [N(P(i)Pr(2)Te)(2)](-) serve as suitable single-source precursors for pure metal telluride thin films or novel nanomaterials, for example, CdTe, PbTe, In(2)Te(3), and Sb(2)Te(3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.