Abstract

Na in Fe-based catalysts can be used to increase CO conversion and C2-C4 olefins and decrease the conversion of H2 and C1 selectivity, but its behaviour at different reaction temperatures is of importance in Fischer-Tropsch synthesis (FTS). The dependency of the C1 formation rate, the conversions of H2 and CO, the water-gas shift reaction, the olefins and paraffins of the C2-C4 and C5-C12 hydrocarbons, and C13+ hydrocarbons on the reaction temperature for prepared Fe/Al2O3 and FeNa/Al2O3 catalysts was evaluated in a tubular fixed-bed reactor. This was done to investigate the effects of Na in Fe-based catalyst at different reaction temperatures (250 – 310 °C). The results show that the effects of Na in Fe-based catalysts to increase CO conversion and decrease H2 conversion are dependent on the reaction temperature in FTS. The Na-promoted Fe-based catalyst (FeNa/Al2O3) gave a lower C1 formation rate at certain lower reaction temperatures (250 °C and 270 °C) compared to the unpromoted Fe-based catalyst (Fe/Al2O3). The presence of Na in the Fe-based catalyst improved the C1 formation rate at certain higher reaction temperatures (290 °C and 310 °C). Na was found to hinder the selectivity towards C2-C4 paraffins and C13+ hydrocarbons, including the oxygenates, and improve the formation of C2-C4 olefins and C5-C12 hydrocarbons at different reaction temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call